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1 Abstract

The Quantum Binomial Options Pricing Model is a novel approach to pricing
derivatives. It serves as a quantum analogue to the classical binomial options
pricing model, using concepts from quantum mechanics like the Pauli matrices
and Bloch sphere to represent the derivatives market. Through usage of a den-
sity matrix and mixed states, the model can potentially price derivatives more
accurately. However, at this time there exist no clear formulae and methods
for hedging derivatives through this model. This paper numerically tests the
performance of the hedging framework corresponding to the model as compared
to the classical model using a year of historical S&P 500 data. The simulation
reveals that the Quantum Binomial Options Pricing model is, at least in its
current state, not viable for usage in actually hedging derivatives. This is due
to numerical instabilities, particularly in the Quantum Theta and Quantum
Vega, the former of which ends up negative, betraying fundamental financial
postulates, and the latter of which is blown out of scale due to the short term
nature of the simulation. We conclude that the Quantum Binomial Options
Pricing Model is currently unsuitable for practical applications and that our
findings reveal the necessity of rigorously testing new financial models against
benchmark models like the Classical Binomial Options Pricing Model.

2 Introduction

2.1 Hedging and the Greeks

In finance, a hedge is a position with the goal of offsetting potential losses from
a variety of factors, like changes in a derivative’s underlying asset price, changes
in that asset’s volatility, or a change in interest rates. There are many different
strategies for hedging with derivatives, the most common being delta hedging,
vega hedging, theta hedging, and rho hedging.
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2.2 The Classical Binomial Options Pricing Model

The binomial options pricing model[1] (BOPM) is a method used to calculate
the fair price of an option. It offers a discrete-time framework that maps out
potential future price movements of an underlying asset, such as a stock, in a
series of upward or downward steps. This ”binomial tree” of possible prices
allows for the valuation of the option at each point in time, working backward
from the expiration date to the present. The formula for BOPM is what follows:

Ct−∆t,i = e−r∆t (pCt,i + (1− p)Ct,i+1) (1)

Where:

• Ct,i is the option’s value at the ith node at time t

• r is the risk-free rate

• p is the probability of an up move

2.3 Quantum Finance

Quantum finance is an emerging field concerned with applying theories in quan-
tum mechanics to solve problems in finance. By leveraging the unique properties
of quantum physics, it aims to create more accurate financial models and speed
up calculations that are currently too complex for even the most powerful clas-
sical computers.

2.4 The Quantum Binomial Options Pricing Model

The quantum binomial options pricing model[3] (QBOPM), aims to serve as
a quantum analogue to BOPM. Instead of assuming that an asset’s price can
only move up or down in discrete steps based on classical probabilities, QBOPM
uses the principles of quantum mechanics to describe these potential price move-
ments. This allows for a more nuanced and potentially more powerful way to
analyze the evolution of asset prices.

In the BOPM, the market at any point is in a definite state (a specific price
node). The QBOPM replaces this with a quantum state described by a density
matrix, ρ. The density matrix is used in quantum mechanics to describe an
ensemble of quantum states, and holds all the available information about a
quantum system. For a two state system (analogous to the up and down moves
in BOPM), ρ will be a 2×2 hermitian matrix, expressed as a linear combination
of the identity matrix (I2) and the three Pauli spin matrices, σx, σy, σz:

ρ =
1

2

(
1 + z x− iy
x+ iy 1− z

)
=

1

2
(I2 + xσx + yσy + zσz) (2)

where (x, y, z) is a real vector called the Bloch vector. To be a valid density
matrix, ρ must satisfy these conditions:
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ρTr(ρ) = 1, ρ ⪰ 0 (3)

The Bloch vector defines a point in the Bloch sphere, where each point
corresponds to a unique quantum state, allowing for the representation of su-
perposition.

In QBOPM, the evolution of the market’s quantum state is governed by a
quantum operator, A. Like the density matrix, the operator A for a two-state
system is a 2×2 matrix that can be constructed from the Pauli basis:

A =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
= x0I2 + x1σx + x2σy + x3σz (4)

While the market state and its evolution are described by matrices, any
measurement or observation of the system must yield a classical, real-valued
outcome. In quantum mechanics, the possible outcomes of a measurement of
an observable (represented by an operator) are the eigenvalues of that operator.
For QBOPM, the observable outcomes of the asset’s growth over one period are
the eigenvalues of the quantum operator A, which are denoted as a and b.

Eigenvalues are found by solving the characteristic equation, or det(A−λI) =
0, yielding

λ = x0 ±
√
x2
1 + x2

2 + x2
3 (5)

These eigenvalues are the direct quantum analogue to the classical up and
down states in the BOPM. The no-arbitrage condition is imposed in the QBOPM
by requiring that the expected rate of return on the asset, when in the quantum
state ρ and evolving according to operator A, must equal the risk-free rate, r.
The quantum mechanical expectation value is given by the trace of the product
of the density matrix and the operator:

1 + r = Tr(ρ(I +A)) =⇒ Tr(ρA) = er∆t − 1 (6)

Expanding this expression using the Pauli matrix representations for ρ and
A leads to a constraint that defines the quantum equivalent of the risk-neutral
world. This constraint can be solved for a ”risk-neutral measure,” M , which
dictates the effective probabilities of observing the eigenvalues a and b in an
arbitrage-free market. The resulting risk-neutral probabilities for the ”up” state
(b) and ”down” state (a) are:

Mb =
er∆t − (1 + a)

b− a

Ma =
(1 + b)− er∆t

b− a

= 1−Mb

(7)

With these components in place, the single-period QBOPM pricing formula
for a European call option, CQ, is constructed. It takes a form that is a direct
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analogue of the classical risk-neutral valuation formula, but uses the quantum-
derived parameters:

CQ = e−r∆t[Mbhb +Maha] (8)

where hb and ha are the option payoffs:

hb = [S0(1 + b)−K]+

ha = [S0(1 + a)−K]+
(9)

However, even though the model was first introduced by Chen in 2010, no
further research has been done into empirically testing the model and its cor-
responding hedging parameters against market data. This paper aims to fill
that gap by deriving the analytical formulae for each of the QBOPM’s main
”Quantum Greeks” and creating a simulation based on historical market data
to compare to the classical BOPM.

2.5 The Greeks

In financial risk management, the Greeks[2] represent the sensitivity of the value
of a derivative to changes in underlying parameters, such as the price of the
underlying asset, volatility of the underlying asset, or the passage of time. The
Greeks are represented by the partial derivative of the derivative’s value with
respect to the parameter. Some of the most common first order Greeks are:

• Delta (∆), the sensitivity of the derivative’s value to changes in the price
of the underlying asset, or ∆ = ∂V

∂S

• Vega (ν), the sensitivity of the derivative’s value to changes in the volatility
of the underlying asset, or ν = ∂V

∂σ

• Theta (Θ), the sensitivity of the derivative’s value to the passage of time,
or Θ = −∂V

∂τ , τ = ∆t

• Rho (ρ), the sensitivity of the derivative’s value to changes in the risk-free
rate, or ρ = ∂V

∂r

• Epsilon (ϵ), the sensitivity of the derivative (option)’s value to changes in
the underlying dividend yield, or ϵ = −∂V

∂q

There also exist second order Greeks, which are the rates of change of the
first order Greeks. The most common is Gamma:

• Gamma (Γ), the sensitivity of Delta to changes in the underlying price,

or Γ = ∂2V
∂S2

Many of these Greeks can be used to hedge to keep the portfolio neutral
to changes in that Greek’s underlying parameter, for example keeping a Delta
neutral or Vega neutral portfolio.

4



3 Derivations of Quantum Greeks

3.1 Quantum Delta

Much like the classical Delta, the Quantum Delta, ∆Q, is the first order partial
derivative of CQ with respect to S0,

∆Q =
∂CQ

∂S0
(10)

This quantity represents the instantaneous rate of change of the option’s
value as the underlying stock price changes. In practical terms, it is the number
of shares of the underlying asset an option writer must hold (or short) for each
option sold to create a risk-neutral position.

∂CQ

∂S0
=

∂

∂S0
e−r∆t[Mbhb +Maha]

=
∂

∂S0
e−r∆t[Mb[S0(1 + b)−K]+ +Ma[S0(1 + a)−K]+]

= e−r∆t[Mb(1 + b)Θ(S0(1 + b)−K) +Ma(1 + a)Θ(S0(1 + a)−K)]

(11)

where Θ(x) is the Heaviside step function, which is defined as:

Θ(x) := 1R≥0
(12)

For an option that is deep in-the-money, such that it is guaranteed to be
in-the-money in both future states, both Θ(S0(1+b)−K) and Θ(S0(1+a)−K)
are equal to 1, and the formula simplifies to:

∆ITM
Q = e−r∆t[Mb(1 + b) +Ma(1 + a)] (13)

A crucial observation arises from the formula for ∆Q. It depends on the
parameters r,Ma,Mb, a, and b. The eigenvalues a and b are determined by
the parameters (x0, x1, x2, x3) of A. Additionally, the risk-neutral condition
r = Tr(ρA) establishes a relationship between the parameters of A and the
parameters of ρ, (x, y, z). Because of this relationship, ∆Q is not just a function
of volatility and interest rates like in the classical BOPM, but instead a function
of the entire quantum state of the market, suggesting that ∆Q can capture a
finer-grained market structure for a more accurate hedging.

3.2 Quantum Gamma

While delta provides a first-order approximation of an option’s price change, it
is not constant. As the underlying asset’s price moves, the delta changes. This
second order effect is captured by Gamma, which measures the rate of change of
delta. A portfolio with high gamma requires frequent rebalancing to maintain
delta-neutrality.
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Like the classical Gamma, Quantum Gamma, ΓQ is the second order partial
derivative of CQ with respect to S0, or the first order partial derivative of ∆Q:

ΓQ =
∂2CQ

∂S2
0

=
∂∆Q

∂S0
(14)

∂∆Q

∂S0
=

∂

∂S0
e−r∆t[Mb(1 + b)Θ(S0(1 + b)−K) +Ma(1 + a)Θ(S0(1 + a)−K)]

= e−r∆t[Mb(1 + b)2δ(S0(1 + b)−K) +Ma(1 + a)2δ(S0(1 + a)−K)]

(15)

Where δ(x) is the Dirac delta function, which is defined as:

∫ ∞

−∞
f(x)δ(x− a)dx = f(a) (16)

This is called the sifting property, and gives these two characteristics:

δ(x) = 0, for x ̸= 0,

∫ ∞

−∞
δ(x)dx = 1 (17)

Because of this usage of the Dirac Delta function, the financial interpretation
of this ΓQ formula is difficult. ΓQ is 0 everywhere except at two specific stock
prices, S0(1+ b)−K, and S0(1+ a)−K, where it is infinite. This is an artifact
of the single period QBOPM, and would likely smooth out to a realistic and
continuous function for a multi period model.

3.3 Quantum Vega

One of the most important factors in pricing an option is volatility. Therefore,
it is important to be able to hedge against changes in it. This is where we can
use Vega. Quantum Vega is defined as

νQ =
∂CQ

∂σ
(18)

To derive νQ, first a relationship between volatility and the parameters of the
quantum model must be defined. A natural quantum analogue to the classical
volatility is the spread between eigenvalues, or b− a.

σQ = b− a = (x0 +
√
x2
1 + x2

2 + x2
3)− (x0 −

√
x2
1 + x2

2 + x2
3)

= 2
√
x2
1 + x2

2 + x2
3

(19)

From this, we can define a and b in terms of σQ:

6



b = x0 +
σQ

2

a = x0 −
σQ

2

(20)

We now have all tools required to derive a formula for hedging with σQ:

νQ =
∂CQ

∂σQ
=

∂

∂σQ

(
e−r∆t[Mbhb +Maha]

)
= e−r∆t

[
∂Mb

∂σQ
hb +Mb

∂hb

∂σQ
+

∂Ma

∂σQ
ha +Ma

∂ha

∂σQ

]
= e−r∆t

[
ha − hb

σ2
Q

(er∆t − 1− x0) +
S0

2
(MbΘb −MaΘa)

] (21)

This result provides a generalized formula for νQ, allowing for hedges to the
most important factor in an option’s price.

3.4 Quantum Rho

Rho measures the sensitivity of the option’s price to changes in interest rates.
This acts as a hedge against the overall economic performance of the country.
To derive it, we must differentiate with respect to r.

ρQ =
∂CQ

∂r
(22)

r appears in both the discount factor e−r∆t and the risk neutral measures
Ma and Mb:

ρQ =
∂

∂r

(
1

b− a

[
(1− e−r∆t(1 + a))hb + (e−r∆t(1 + b)− 1)ha

])
=

1

b− a

[
−(−∆te−r∆t(1 + a))hb + (−∆te−r∆t(1 + b))ha

]
=

∆te−r∆t

b− a
[(1 + a)hb − (1 + b)ha]

(23)

3.5 Quantum Theta

The last of the Greeks derived, Θ, is the partial derivative of the option price
with respect to the passage of time,

ΘQ = −∂CQ

∂∆t
(24)

The time to expiration, ∆t, appears in both the discount factor e−r∆t and
within the risk-neutral measures Ma and Mb.
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ΘQ = −∂CQ

∂∆t
= − ∂

∂∆t

(
e−r∆t[Mb(∆t)hb +Ma(∆t)ha]

)
= −

(
−rCQ + e−r∆t

[
∂Mb

∂∆t
hb +

∂Ma

∂∆t
ha

])
= rCQ − e−r∆t

[(
rer∆t

b− a

)
hb −

(
rer∆t

b− a

)
ha

]
= rCQ − r

b− a
(hb − ha)

(25)

This shows the option’s time decay is composed of two parts: growth at the
risk-free rate (the rCQ term), and a second term that depends on the interest
rate and the spread of the potential option payoffs, hb − ha.

4 Simulation Methodology

To empirically test and compare the accuracy of the hedging framework for
the QBOPM to that of the Classical BOPM, we create a simulation based on
historical market data.

4.1 Data and Simulation Structure

• Data Sources: Our simulation uses daily closing prices for the SPDR S&P
500 ETF (ticker: SPY) as the underlying asset. For the volatility input
(σ), we used the daily closing value of the CBOE Volatility Index (VIX).
The risk-free rate (r) was the 13-Week Treasury Bill Rate (̂IRX). All data
was sourced from Yahoo Finance for the period of January 1, 2024, to
January 1, 2025.

• Simulated Option: For each trading day, we simulated the pricing and
hedging of a new, at-the-money European call option with a single-day
time horizon, consequently ∆t = 1

252

• Greeks: for the classical BOPM, Delta was calculated analytically while
the rest were calculated numerically through the bump and revalue method.
For the quantum model, the greeks were all calculated using the analytical
formulae derived in Section 3.

4.2 Classical BOPM Calibration

The classical BOPM was calibrated daily using the market-implied volatility
from the VIX. The parameters were determined using the Cox-Ross-Rubinstein
(CRR) methodology:

1. The VIX index value was scaled by 100 to represent annualized volatility
(σ)
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2. The up-move (u) and down-move (d) parameters were set as: u = eσ
√
∆t

and d = 1
u

3. The risk-neutral probability was then calculated as p = er∆t−d
u−d

4.3 Quantum BOPM Calibration

The QBOPM has several free parameters (x0, x1, x2, x3). To ensure a well-
defined daily calibration consistent with market conditions, we used a specific
methodology to link these parameters to the observed VIX volatility:

1. No arbitrage condition: E[Return] = Tr(ρA) = er∆t − 1

2. Calibrating volatility: Var(A) = Tr(ρA2)− Tr(ρA)2 = σ2∆t

3. Parameter derivation: The market state is maximally mixed, ρ = 1
2I2,

meaning it is in a state of maximum entropy. This implies that we have no
prior knowledge of the market’s direction, so the Bloch sphere is (x, y, z) =
(0, 0, 0). Additionally, the operator A is isotropic, meaning its directional
components are equal (x1 = x2 = x3 = C). From this we can derive the
mean and variance:

• Tr(ρA) = Tr( 12I2 · (x0I2 + C(σx + σy + σz))) = x0 = er∆t − 1.

• A2 = (x0I2+C(σx+σy +σz))
2 = (x2

0+3C2)I2+2x0C(σx+σy +σz)

Tr(ρA2) = Tr
(
1
2I2 ·A

2
)
= x2

0 + 3C2. Therefore, Var(A) = (x2
0 +

3C2)− x2
0 = 3C2 =⇒ C = σ

√
∆t
3

5 Simulation Results and Discussion

Having completed the simulation, comparing the daily outputs of both the clas-
sical and quantum model show that while the QBOPM is a novel approach to
options pricing, in its current formulation it is inconsistent with foundational
financial principles. This comparison is shown in Figure 1.

From this, two clear and critical observations can be made: the Quantum
Vega is well above the Classical Vega at around 130, and the Quantum Theta
is negative. These two distinctions highlight the places where the QBOPM falls
short.

First: the Quantum Vega’s extreme value is almost certainly a byproduct of

the formula for Quantum Vega (e−r∆t
[
ha−hb

σ2
Q

(er∆t − 1− x0) +
S0

2 (MbΘb −MaΘa)
]
).

This suggests the model’s unreliability at shorter time frames as compared to
the classical counterpart. The presence of the σ2

Q term in a denominator is the
parameter blowing up the formula, especially because the testing was done at a
daily frequency where σ2

Q would be very small.
Second: the most critical error found is that Quantum Theta is negative.

This is a direct violation of one of the most fundamental principles in financial
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Figure 1: Comparison of Quantum vs Classical Greeks

and option pricing theory, the no-arbitrage condition. A negative theta implies
that the option will gain value as time goes on, as opposed to the classical and
more accurate theta decay.

6 Conclusion

The objective of this paper was to both create and numerically test hedging
formulae for the Quantum Binomial Option Pricing Model. Through our anal-
ysis, we found that hedging through this model yields numerically unstable and
impossible values for Quantum Greeks that betray basic postulates in options
pricing and financial theory. Quantum Theta is found to be negative, which
goes against the no-arbitrage condition, a foundational assumption in deriva-
tives pricing. Additionally, Quantum Vega was blown out of scale in the tests,
which was almost certainly an artifact of the small, daily frequency used in
testing. This leads us to the conclusion that in its present state, the Quantum
Binomial Options Pricing Model is not a viable tool to be used for hedging
derivatives. However, this does not invalidate the field of quantum finance as a
whole, rather it highlights the necessity of thoroughly validating and rigorously
testing tools and models developed. Future work could be done in a similar fash-
ion, by creating formulae for other options pricing models like the Black-Scholes
and Heston models. Additionally, testing is still needed on creating these for-
mulae for multi-period Quantum Binomial Options Pricing Models, which could
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potentially solve these errors in numerical instability.
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